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1. INTRODUCTION 

IN PRACTICE, conjugate heat transfer problems arc very 
important because interfacial boundary conditions are 
unknown. These problems have been the subject of many 
investigations beginning with Perelman [1] in 1961, who con- 
sidered the convective heat transfer in the boundary-layer 
flow over a flat plate of finite thickness with a two-dimen- 
sional thermal condition in the plate. A one-dimensional 
approximation of the conduction process in a flat plate has 
been introduced by Luikov [2] and several other boundary- 
layer conjugate flows have been described by, for example, 
Martynenko and Sokovishin [3], Pozzi and Lupo [4], and Yu 
et al. [5]. 

The purpose of the present note is to re-examine the prob- 
lem of conjugate forced convection flow over a flat plate of 
finite thickness by using a quite different solution technique. 
This method is based on a recent paper by Merkin and Pop 
[6], who showed that the parabolic nature of the equations 
governing the boundary-layer flows along a vertical flat plate 
can be fully exploited. This enables a parameter, originally 
introduced by Pozzi and Lupo [4]. to be removed from the 
system of equations and boundary conditions and thus the 
solution only depends on the Prandtl number. The trans- 
formed energy equation is solved numerically based on a 
finite-difference approximation. Pozzi and Lupo [4] in their 
study have solved the problem by the method of series expan- 
sions: one series is valid for small values of x (coordinate 
along the plate) and a second series which is valid for large 
values of X. Further, these authors have shown that if the 
series for small values of x is suitably transformed, using a 

Pade transformation, it can describe accurately the solution 
in the entire domain of the flow. This solution method, even 
though of considerable interest, still requires a considerable 
amount of numerical work to find the solution of a large 
number of interrelated ODES. In fact, the amount of numeri- 
cal work required may well exceed that needed for a direct 
numerical solution of the complete problem. 

2. ANALYSIS 

The problem analysed here is such that an incompressible 
flow of velocity U,, temperature T, and thermal con- 
ductivity kr, passes over a flat plate of length I, thickness b 
and thermal conductivity k,, as shown in Fig. 1. The plate 
is insulated at the leading edge and the lower surface is 
maintained at the constant temperature T, (> T,.). If the 
axial conduction along the wall is negligible when compared 
with the normal conduction across the wall, which is con- 
sistent with boundary-layer theory, then the temperature 
profile in the wall is linear in _V. the coordinate normal to the 
plane of the plate, and is given by 

Here, T,(,f) is the temperature at the solid-fluid interface and 
is determined by the solution of the forced flow convection 
problem. 

Assuming that dissipation is negligible, then the boundary- 
layer equations for steady laminar flow over a flat plate in 

-b 
TJ= const 

e 

FIG. 1. Physical model and coordinate system. 
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NOMENCLATURE 

thickness of the plate Greek symbols 
scaled stream function. equation (6) 9 similarity variable 
scaled temperature, equation (9a) 0 non-dimensional temperature 
scaled temperatures, equations (7a) and @a) 1’ kinematic viscosity of the fluid 
thermal conductivity new variable, equation (9b) 
length of the plate s stream function. 
length scale, equation (5a) 
Prandtl number Superscripts 
Reynolds number differentiation with respect to r) 

temperature - dimensional variables. 
temperature (constant) at the outer edge of the 
plate Subscripts 
free stream velocity f denotes fluid 
coordinate along the plate S denotes solid 
coordinate normal to the plate W condition at the solid-fluid interface 
transformed coordinate. equation (9b). ‘Xl condition in the free stream. 

dimensionless form may be written as 

(2) 

c’$ PO (:I) iv 1 i-V _~_ . ..._= 
iv Fs ?.I- ii I’ Pr iy’ 

(3) 

which have to be solved subject to the boundary conditions 

w 
--=I, O=Oas.r+z, 
C’J 

o<.u<co. (4b) 

In these equations the dimensionless variables are designed 
as 

O= (T-T,)/(T,-T,), L= +(hk,/h,)’ (5b) 

where Re = b’,L/v is the Reynolds number and L is the 
characteristic length of the plate, which is different to the 
choice made by Pozzi and Lupo [4] who used the plate 
thickness h as a reference length scale. The third boundary 
condition in (4a) has been obtained using equation (1) and 
the continuity of the heat flux condition at the interface, 
namely 

It should be noted that the system of equations (2) and (3) 
involves only the single parameter Pr. the Prandtl number. 
as opposed to the non-dimensionalization used in ref. [4] 
which involves a further parameter which is related to the 
Brun number. 

3. NUMERICAL SOLUTION 

Equation (2) admits the well-known Blasius similarity 
solution 

.f(?) = $(S,.V)i.X’ 2, */ = J/.X ’ 2 (6) 
where the values offandf’ at each value of TV may be found, 
for example, in ref. (71, and we now concentrate on the 
solution of equation (3). For small values of X, i.e. near the 
leading edge. this equation has a solution of the form 

f) = .Y ’ yy(.x, 9) 

and then boundary condition (4a) gives 

g’=.u”‘g-1 onq=O. 

A solution can then be sought of the form 

(7a) 

(7b) 

where the functions 9,(n) must satisfy the differential equa- 
tions and boundary conditions 

~g.‘.+i.~y,‘-l(l+i)./‘q, =O, i=O.l.2,... (9a) 

g;(O) = - 1, y,‘(O) = g,-,(O) 

g,(x) = 0 
C’b) 

A solution which is valid for large values of x, i.e. far 
downstream, on the other hand, can be expressed in the form 

(I = ,i(.X, 1) (IOa) 

and now boundary condition (4a) becomes 

.Y ‘24’=4-1 onil=O. (lob) 

The form of equation (10) suggests that the solution takes 
the form 

,4(X. ?I) = 1 .Y_ ’ ‘A,( 7) (11) 
,=o 

where the coefficient functions are given by the differential 
equations 

and 

40(O) = 1. 9,‘(O) = s,‘-, (0) i = l-2,3,. 

4,(cf-) = 0 i=O,I 7 (12b) ,_,... 

However, expansion (11) is not unique and eigensolutions of 
the form 

0(X? V) = ,40(V) +.I- ‘,4,(V) 

exist where d).(n) satisfies 

(14b) 
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Table 1. Values of 8, for Pr = 0.7t 

Solution of equation (9) 
Solution of 

r equation (16) 21 terms 16 terms 11 terms 1 term Solution (19) 

0.02 0.022137 
0.129 0.12913 
0.228 0.21044 
0.346 0.29122 
0.504 0.37843 
0.659 0.44718 
0.814 0.50330 
1.094 0.58101 
1.414 0.64832 
1.734 0.69767 
2.054 0.73521 
2.533 0.77709 
3.014 0.80767 
4.134 0.85465 
6.054 0.89785 
8.134 0.92284 

10.054 0.93709 

0.022137 0.022137 0.022137 0.022562 
0.12913 0.12913 0.12913 0.14524 
0.21044 0.21044 0.21044 0.25734 
0.29122 0.29122 0.29122 0.39060 
0.37843 0.37843 0.37842 0.38302 
0.44718 0.44178 0.44693 0.74312 
0.50331 0.50335 0.50091 0.91780 
0.58171 0.58591 0.52589 0.12338 
0.61269 0.86845 -0.19928 1.59482 

- 1.60878 5.98207 -6.55493 1.95580 

-4.01748 
- 1.83178 
-0.86570 
-0.28238 

0.19355 
0.20614 
0.40937 
0.54306 
0.62739 
0.68545 
0.76019 
0.78565 
0.84373 
0.89329 
0.92058 
0.93575 

7 Obtained from the present full numerical solution of equation (19) compared with the values obtained 
by solving equations (16) for small values of x and equations (12) for large values of x. 

Table 2. Values of 0, for Pr = 7.02t 

Solution of equation (9) 
Solution of 

5 equation (16) 21 terms 16 terms 11 terms 1 term Solution (19) 

0.02 0.047650 
0.1 0.20361 
0.2 0.34447 
0.308 0.45306 
0.416 0.53380 
0.545 0.59913 
0.654 0.64245 
0.815 0.69505 - 
1.020 0.74444 
2.099 0.86430 
3.059 0.90574 
4.019 0.92779 
6.099 0.95209 
8.019 0.96347 
9.939 0.97046 

0.047650 0.047650 0.047650 0.049659 
0.20361 0.20361 0.20345 0.24695 
0.34447 0.34447 0.34447 0.49331 _ 

0.45306 0.45306 0.45277 0.75810 
0.53386 0.53406 0.52661 1.02609 
0.60408 0.61815 0.47794 1.34328 
0.61566 0.87690 -0.21789 1.61121 

-2.27897 7.18659 -7.71475 1.99924 

-0.46329 
0.04788 
0.29649 
0.46262 
0.55198 
0.63893 
0.71525 
0.86041 
0.90422 
0.92710 
0.95196 
0.96346 
0.97052 

t Obtained from the present full numerical solution of equation (16) compared with the values obtained 
by solving equations (9) for small values of x and equations (12) for large values of x. 

Solutions of the transformed equations (9) (12) and (13) 
have been obtained, but this method of solution is not 
pursued further here as it was the method proposed by Pozzi 
and Lupo [4]. Here we are mainly concerned with the direct 
numerical integration of equation (3) by means of a finite- 
difference scheme, and to do this we use the method of 
continuous transformation proposed by Hunt and Wilks [8]. 
Hence, we write 

lI = [(I +52)-“*F(<, Y) (t5a) 

where 

y= t-‘y, 5 = x”2 (15b) 

and note that (15) reduces to (7) for small values of x, and 
to (10) for large values of x. 

On using (6) and (I 5) equation (3) becomes 

which has to be solved subject to the boundary conditions 

g = lF-(I +(q”* on Y=O, 0<5<m (17a) 

F=O as Y-too, 0~ 5 <CD. (17b) 

The method used for solving equation (16), along with 
boundary conditions (17), to obtain the heat transfer charac- 
teristics of the flow is based on a finite-difference scheme 
that parallels that used by Merkin [9], and is therefore not 
reported here. 
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4. RESULTS AND DISCUSSION In conclusion. in this paper we have shown how a simple 

Equations (9) have been solved numerically for Pr = 0.7 transformation can be employed which reduces the number 

and 7.02 using a Runge-Kutta Merson method and the of parameters which occur in the problem by one in com- 

values ofg,(O) agree with those given by Pozzi and Lupo [4] parison to the techniques employed by previous researchers. 

to within less than 0.1% for i = 0, 1, . 19, and are therefore Also we have illustr~;ted that the asymptotic solutions which 

not presented. It is of interest to note that as i increases, have been obtained by solving the sets of differential equa- 

then g,(O) alternates in sign and increases in magnitude for tions (9), (12) and (14) are very useful if solutions are only 

PF = 0.7. but decreases for Pr = 7.02. and thus the radius of required for very smail or very large values of s. If accurate 

convergence of the series will be larger for Pr = 7.02. solutions are required over the entire range of values of .x. 

Numerical integration ofequation (14) shows that the first then an excessively large number of ordinary ~iifferential 

eigensolution has an eigenvalue of I., = 0.80328 for Pr = 0.7 equations in the series for small values of s have to be 

and i., =- 0.75777 for Pr = 7.02. and therefore only the obtained. In such circumstances it is much more elhcicnt to 

solution of equation (I.?) with i = 0 and I is sought. It soive the full governing parabolic partial differential equa- 

is found that ii, = -0.292680 for Pr = 0.7 and i:,(O) = tion (3) provided that the method of continuous trans- 

-0.646542 for I’r = 7.02. We note from equation (13) that f(~rm~ttion. as illustrated in equation (15). is employed. 

8,(y) = $;,(rl) and thus B,(O) = -0.292680 for Pr = 0.7 and 
~Gr(O) = -0.646542 for Pr = 7.02. 

The t~nlperature of the wall of the plate is given by 

o,, = ;(t+<‘)-‘?F(<*o) (18) 1. 

and its numerical value as a function of < is given in Tables 
1 and 2 for Pr = 0.7 and 7.02. respectively. Also shown in 2. 
these tables are the 21, 16, I I and I term small f solutions 
and the large 5 solution. namely, 3. 

(I, = I --0.2926805 -’ Pr = 0.7 

0, = I -0.646542: - ’ Pr = 7.02 I 
(19) 

For Pr = 0.7, it is observed that the 21 term small < sofu- 4, 
tion agrees with the numerical solution to within about 4% 
up to i;‘ = 0.65 for 21 terms, up to [ = 0.55 for 16 termS, up 

to < = 0.4 for I1 terms, up to < = 0.3 for 6 terms and up to 5. 
i: = 0.02 for 1 term. For large values of c. the large ( solution 
is correct to within about 4% for < 2 I. No further terms in 
the large 2 solution can be easily calculated, as the next term 
in the expansion in equation (1 I) involves the eigensolutions. 6. 

The case of Pr = 7.02 is very similar to that for Pr = 0.7, 
except that the small < solution is valid over a much larger 7, 
range of values of <_ e.g. the 21 term solution agrees with the 
numerical soiution to within about 4% up to 4 = 1.4, which 8. 
compares with a value of c = 0.65 for Pr = 0.7. However, 
the large c solution agrees with the numerical solution to 
within about 4% for < 2 2.5 which compares with 5 Z I for 9. 
Pr = 0.7. 
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